51 research outputs found

    The COST 259 Directional Channel Model Part II: Macrocells

    Get PDF
    Abstract — This paper describes the attributes of the COST 259 directional channel model that are applicable for use in the design and implementation of macrocellular mobile and portable radio systems and associated technology. Special care has been taken to model all propagation mechanisms that are currently understood to contribute to the characteristics of practical macrocellular channels and confirm that large scale, small scale, and directional characteristics of implemented models are realistic through their comparison with available measured data. The model that is described makes full use of previously published work, as well as incorporating some new results. It is considered that its implementation should contribute to a tool that can be used for simulations and comparison of different aspects of a large variety of wireless communication systems, including those that exploit the spatial aspects of radio channels, as, for example, through the use of adaptive antenna systems. Index Terms — Direction of arrival, mobile radio channel, smart antenna. I

    Changes in plant diversity in a water‑limited and isolated high‑mountain range (Sierra Nevada, Spain)

    Get PDF
    Open Access funding provided by University of Natural Resources and Life Sciences Vienna (BOKU). This study was funded by the Austrian Academy of Sciences (project MEDIALPS-Disentangling anthropogenic drivers of climate change impacts on alpine plant species: Alps vs. Mediterranean mountains).Supplementary Information The online version contains supplementary material available at https ://doi.org/10.1007/s0003 5-021-00246 -x.We thank Manfred Bardy-Durchhalter for managing the database, Imran Nadeem for discussing climate data preparation, and National Park and Andalusian Environmental Agency staff for their assistance in the field in 2015 and 2019, and answering our questions.Climate change impacts are of a particular concern in small mountain ranges, where cold-adapted plant species have their optimum zone in the upper bioclimatic belts. This is commonly the case in Mediterranean mountains, which often harbour high numbers of endemic species, enhancing the risk of biodiversity losses. This study deals with shifts in vascular plant diversity in the upper zones of the Sierra Nevada, Spain, in relation with climatic parameters during the past two decades. We used vegetation data from permanent plots of three surveys of two GLORIA study regions, spanning a period of 18 years (2001–2019); ERA5 temperature and precipitation data; and snow cover durations, derived from on-site soil temperature data. Relationships between diversity patterns and climate factors were analysed using GLMMs. Species richness showed a decline between 2001 and 2008, and increased thereafter. Species cover increased slightly but significantly, although not for endemic species. While endemics underwent cover losses proportional to non-endemics, more widespread shrub species increased. Precipitation tended to increase during the last decade, after a downward trend since 1960. Precipitation was positively related to species richness, colonisation events, and cover, and negatively to disappearance events. Longer snow cover duration and rising temperatures were also related to increasing species numbers, but not to cover changes. The rapid biotic responses of Mediterranean alpine plants indicate a tight synchronisation with climate fluctuations, especially with water availability. Thus, it rather confirms concerns about biodiversity losses, if projections of increasing temperature in combination with decreasing precipitation hold true.University of Natural Resources and Life Sciences Vienna (BOKU) - Austrian Academy of Science

    Novel Technologies and Their Application for Protected Area Management: A Supporting Approach in Biodiversity Monitoring

    Get PDF
    State-of-the-art tools are revolutionizing protected area (PA) manager approaches to biodiversity monitoring. Effective strategies are available for test site establishment, data collection, archiving, analysis, and presentation. In PAs, use of new technologies will support a shift from primarily expert-based to automated monitoring procedures, allowing increasingly efficient data collection and facilitating adherence to conservation requirements. Selection and application of appropriate tools increasingly improve options for adaptive management. In this chapter, modern biodiversity monitoring techniques are introduced and discussed in relation to previous standard approaches for their applicability in diverse habitats and for different groups of organisms. A review of some of today’s most exciting technologies is presented, including environmental DNA analysis for species identification; automated optical, olfactory, and auditory devices; remote sensing applications relaying site conditions in real-time; and uses of unmanned aerial systems technology for observation and mapping. An overview is given in the context of applicability of monitoring tools in different ecosystems, providing a theoretical basis from conceptualization to implementation of novel tools in a monitoring program. Practical examples from real-world PAs are provided

    Toward a Li‐Ion Battery Ontology Covering Production and Material Structure

    Get PDF
    An ontology for the structured storage, retrieval, and analysis of data on lithium-ion battery materials and electrode-to-cell production is presented. It provides a logical structure that is mapped onto a digital architecture and used to visualize, correlate, and make predictions in battery production, research, and development. Materials and processes are specified using a predetermined terminology; a chain of unit processes (steps) connects raw materials and products (items) of battery cell production. The ontology enables the attachment of analytical methods (characterization methods) to items. Workshops and interviews with experts in battery materials and production processes are conducted to ensure that the structure is conformable both for industrial-scale and laboratory-scale data generation and implementation. Raw materials and intermediate products are identified and defined for all steps to the final battery cell. Steps and items are defined based on current standard materials and process chains using terms that are in common use. Alternative structures and the connection of the ontology to other existing ontologies are discussed. The contribution provides a pragmatic, accessible way to unify the storage of materials-oriented lithium-ion battery production data. It aids the linkage of such data with domain knowledge and the automation of data analysis in production and research

    Climate change affects vegetation differently on siliceous and calcareous summits of the European Alps

    Get PDF
    The alpine life zone is expected to undergo major changes with ongoing climate change. While an increase of plant species richness on mountain summits has generally been found, competitive displacement may result in the long term. Here, we explore how species richness and surface cover types (vascular plants, litter, bare ground, scree and rock) changed over time on different bedrocks on summits of the European Alps. We focus on how species richness and turnover (new and lost species) depended on the density of existing vegetation, namely vascular plant cover. We analyzed permanent plots (1 x 1 m) in each cardinal direction on 24 summits (24 x 4 x 4), with always four summits distributed along elevation gradients in each of six regions (three siliceous, three calcareous) across the European Alps. Mean summer temperatures derived from downscaled climate data increased synchronously over the past 30 years in all six regions. During the investigated 14 years, vascular plant cover decreased on siliceous bedrock, coupled with an increase in litter, and it marginally increased on higher calcareous summits. Species richness showed a unimodal relationship with vascular plant cover. Richness increased over time on siliceous bedrock but slightly decreased on calcareous bedrock due to losses in plots with high plant cover. Our analyses suggest contrasting and complex processes on siliceous versus calcareous summits in the European Alps. The unimodal richness-cover relationship and species losses at high plant cover suggest competition as a driver for vegetation change on alpine summits

    Inflammation and In-Stent Restenosis: The Role of Serum Markers and Stent Characteristics in Carotid Artery Stenting

    Get PDF
    BACKGROUND: Carotid angioplasty and stenting (CAS) may currently be recommended especially in younger patients with a high-grade carotid artery stenosis. However, evidence is accumulating that in-stent restenosis (ISR) could be an important factor endangering the long-term efficacy of CAS. The aim of this study was to investigate the influence of inflammatory serum markers and procedure-related factors on ISR as diagnosed with duplex sonography. METHODS: We analyzed 210 CAS procedures in 194 patients which were done at a single university hospital between May 2003 and June 2010. Periprocedural C-reactive protein (CRP) and leukocyte count as well as stent design and geometry, and other periprocedural factors were analyzed with respect to the occurrence of an ISR as diagnosed with serial carotid duplex ultrasound investigations during clinical long-term follow-up. RESULTS: Over a median of 33.4 months follow-up (IQR: 14.9-53.7) of 210 procedures (mean age of 67.9±9.7 years, 71.9% male, 71.0% symptomatic) an ISR of ≄70% was detected in 5.7% after a median of 8.6 months (IQR: 3.4-17.3). After multiple regression analysis, leukocyte count after CAS-intervention (odds ratio (OR): 1.31, 95% confidence interval (CI): 1.02-1.69; p = 0.036), as well as stent length and width were associated with the development of an ISR during follow-up (OR: 1.25, 95% CI: 1.05-1.65, p = 0.022 and OR: 0.28, 95% CI: 0.09-0.84, p = 0.010). CONCLUSIONS: The majority of ISR during long-term follow-up after CAS occur within the first year. ISR is associated with periinterventional inflammation markers and influenced by certain stent characteristics such as stent length and width. Our findings support the assumption that stent geometry leading to vessel injury as well as periprocedural inflammation during CAS plays a pivotal role in the development of carotid artery ISR

    Directional turnover towards larger-ranged plants over time and across habitats

    Get PDF
    Species turnover is ubiquitous. However, it remains unknown whether certain types of species are consistently gained or lost across different habitats. Here, we analysed the trajectories of 1827 plant species over time intervals of up to 78 years at 141 sites across mountain summits, forests, and lowland grasslands in Europe. We found, albeit with relatively small effect sizes, displacements of smaller- by larger-ranged species across habitats. Communities shifted in parallel towards more nutrient-demanding species, with species from nutrient-rich habitats having larger ranges. Because these species are typically strong competitors, declines of smaller-ranged species could reflect not only abiotic drivers of global change, but also biotic pressure from increased competition. The ubiquitous component of turnover based on species range size we found here may partially reconcile findings of no net loss in local diversity with global species loss, and link community-scale turnover to macroecological processes such as biotic homogenisation

    GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands

    Get PDF
    GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board
    • 

    corecore